Show HN: Optimizing LiteLLM with Rust – When Expectations Meet Reality

github.com

19 points by ticktockten 2 hours ago

I've been working on Fast LiteLLM - a Rust acceleration layer for the popular LiteLLM library - and I had some interesting learnings that might resonate with other developers trying to squeeze performance out of existing systems.

My assumption was that LiteLLM, being a Python library, would have plenty of low-hanging fruit for optimization. I set out to create a Rust layer using PyO3 to accelerate the performance-critical parts: token counting, routing, rate limiting, and connection pooling.

The Approach

- Built Rust implementations for token counting using tiktoken-rs

- Added lock-free data structures with DashMap for concurrent operations

- Implemented async-friendly rate limiting

- Created monkeypatch shims to replace Python functions transparently

- Added comprehensive feature flags for safe, gradual rollouts

- Developed performance monitoring to track improvements in real-time

After building out all the Rust acceleration, I ran my comprehensive benchmark comparing baseline LiteLLM vs. the shimmed version:

Function Baseline Time Shimmed Time Speedup Improvement Status

token_counter 0.000035s 0.000036s 0.99x -0.6%

count_tokens_batch 0.000001s 0.000001s 1.10x +9.1%

router 0.001309s 0.001299s 1.01x +0.7%

rate_limiter 0.000000s 0.000000s 1.85x +45.9%

connection_pool 0.000000s 0.000000s 1.63x +38.7%

Turns out LiteLLM is already quite well-optimized! The core token counting was essentially unchanged (0.6% slower, likely within measurement noise), and the most significant gains came from the more complex operations like rate limiting and connection pooling where Rust's concurrent primitives made a real difference.

Key Takeaways

1. Don't assume existing libraries are under-optimized - The maintainers likely know their domain well 2. Focus on algorithmic improvements over reimplementation - Sometimes a better approach beats a faster language 3. Micro-benchmarks can be misleading - Real-world performance impact varies significantly 4. The most gains often come from the complex parts, not the simple operations 5. Even "modest" improvements can matter at scale - 45% improvements in rate limiting are meaningful for high-throughput applications

While the core token counting saw minimal improvement, the rate limiting and connection pooling gains still provide value for high-volume use cases. The infrastructure I built (feature flags, performance monitoring, safe fallbacks) creates a solid foundation for future optimizations.

The project continues as Fast LiteLLM on GitHub for anyone interested in the Rust-Python integration patterns, even if the performance gains were humbling.

Edit: To clarify - the negative performance for token_counter is likely in the noise range of measurement, suggesting that LiteLLM's token counting is already well-optimized. The 45%+ gains in rate limiting and connection pooling still provide value for high-throughput applications.

jmalicki an hour ago

The benchmarks in your README.md state that it is several times faster for those operations, are they a lie?

aaronblohowiak an hour ago

measure before implementing "improvements", you'll develop a sense over time of what is taking too long.